

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ

Μεταπτυχιακό πρόγραμμα ειδίκευσης και συμπληρωματικής ειδίκευσης στη Στατιστική

8 Νοεμβρίου 2001

ΕΞΕΤΑΣΕΙΣ -Μέρος 1°

Μάθημα : "Προχωρημένες χρονολογικές σειρές" Διδάσκοντες: Ε. Ιωαννίδης

1st Question

Let $F(\lambda)$ be the spectral distribution function of a stationary process $\{X_t\}_{-\infty < t < \infty}$, which has autocovariance function $\gamma(u)$ and let $\{Z_{\lambda}\}_{-\pi \le \lambda \le \pi}$ be the orthogonal increment process in the representation $X_t = \int_{-\infty}^{\pi} e^{i\lambda t} dZ(\lambda)$.

a) (1.5 points) Which of the following are random variables and which are deterministic quantities:

F(
$$\pi/3$$
), Z($\pi/3$), var[Z($\pi/3$)-Z($\pi/4$)], $\gamma(3)$, X(10), $\int_{-\pi}^{\pi} \lambda^2 dZ(\lambda)$

b) (1.5 points) Assume I observe a path of $\{Z_{\lambda}\}_{-\pi \le \lambda \le \pi}$ and I remark that there is a clear jump (discontinuity) of $Z(\lambda)$ at $\lambda = \pi/6$. Will F jump as well at $\lambda = \pi/6$? If yes, by how much? Do I know anything about the behavior of $\gamma(u)$ when u is large? If I observe another path of $\{Z_{\lambda}\}_{-\pi \le \lambda \le \pi}$ will there probably be again a jump at $\lambda = \pi/6$? A how big one?

2nd Question

Assume I observe $X_1, ..., X_T$ of a stationary process $\{X_t\}_{-\infty < t < \infty}$ which satisfies the equation: $X_t = 0.99 X_{t-3} + \varepsilon_t$, where ε_t is white noise with variance 1. I then calculate the moving average Y_t over X_t :

$$Y_t = 1/3 X_{t-1} + 1/3 X_t + 1/3 X_{t+1}$$
.

- a) (1.5 points) Calculate the spectral density of X $f_X(\lambda)$ and evaluate it at $\lambda=0$, $2\pi/3$ and π . (Note that f_X hat its peaks at $\lambda=0$ and $2\pi/3$).
- b) (1.5 points) Calculate the spectral density $f_Y(\lambda)$ of Y and evaluate it at the same frequencies.
- c) (1 point) How can I see by comparing their spectral densities whether Y will be smoother than X?

 $(\cos(0)=1, \cos(2\pi/3)=-0.5, \cos(\pi)=-1, \cos(3\pi)=-1)$

3rd Question

Let the spectral density of a stationary process $f(\lambda)$, with $f(\lambda)=1$ for $\lambda \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and

- f(λ)=0 for $\lambda \in \left[-\pi, -\frac{\pi}{2}\right] \cup \left[\frac{\pi}{2}, \pi\right]$.
- a) (1 point) What do you think about the autocovariance function of the process: will it by O(1/u), O(1/u²), $\sum |\gamma(u)| < \infty$, $\sum |\gamma(u)|^2 < \infty$? If you do not remember the exact properties just explain which characteristics of f will be decisive for the behavior of γ and in what sense.
- b) (2 points) Calculate the autocovariance function of the process.
- $\left(d[\sin(\lambda)]/d\lambda = \cos(\lambda), d[\cos(\lambda)]/d\lambda = -\sin(\lambda), \cos(\lambda) = \cos(-\lambda), \sin(\lambda) = -\sin(-\lambda) \right)$