

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ

Μεταπτυχιακό πρόγραμμα ειδίκευσης και συμπληρωματικής ειδίκευσης στη Στατιστική

10 Ιανουαρίου 2003

ΕΞΕΤΑΣΕΙΣ

Μάθημα : "Προχωρημένες χρονολογικές σειρές- time domain" Διδάσκοντες: Ε. Ιωαννίδης

1st Question

Assume you observe data $X_1, ..., X_T$ which exhibit a linear trend.

- **a.** (0.5 points) Explain the two possibilities of eliminating the trend. How would you chose among them?
- **b.** (0.5 points) Give an example of a model where it is inappropriate to estimate and subtract the trend from the data and where you would rather difference the data <u>once</u>, to eliminate the trend.

2nd Ouestion

Consider the following MA(2) time-series model: $X_t = Z_t - Z_{t-1} + 0.5 Z_{t-2}$, where $\{Z_t\}$ is White noise, with variance 1.

- a. (0.7 points) Calculate it's Autocovariance function.
- b. (0.6 points) Is this model causal and/or invertible? Which of these two properties tells us whether it is possible to specify an $AR(\infty)$ model, the ACVF of which will coincide with the ACVF of the above MA(2)?
- c. *(1.2 points) Explain how you could find an AR(p)-model (<u>p finite</u>) with the property that it's ACVF will coincide with the ACVF of the above MA(2) for lags u= 1,.., 10? What p should I choose? (*)
- d. (1 point) Consider the model defined by $Y_t = X_t 2X_{t-1} + X_{t-2}$. Calculate it's ACVF.

(*) Explain the calculations in enough detail that they could be carried out (for specific values of the quantities involved) on a PC by somebody who is not familiar with the subject. e.g.: set a rxr matrix A = [..] and a vector c = (...]. Then calculate $A^{-1}c$, ...

3rd Question

Assume you observe data $X_1, ..., X_T$ from a 0-mean AR(2) process $\{X_t\}$ and from these you obtain estimates $\hat{\gamma}(0),...,\hat{\gamma}(T-1)$ of the ACVF in the usual way.

- a. (0.4 points) Explain also how you would construct confidence intervals for ϕ_1 , assuming you have already constructed estimates $\hat{\phi}_1$, $\hat{\phi}_2$, $\hat{\sigma}^2$ of the autoregressive parameters ϕ_1 , ϕ_2 and σ^2 . (*)
- b. (0.6 points) Explain how you would construct estimates of the PACF $\alpha(u)$, u = 1,...,20. (*) How would you recognize in the behavior of the estimated PACF that the model which generated the data is an AR(2)?
- c. (1 point) If $\gamma(u)$ denotes the ACVF of the process, which of the following are random variables and which not?

X(10), $\gamma(5)$, φ_1 , $\widehat{\varphi}_1$, $var(\widehat{\varphi}_1)$, the length of the confidence interval for φ_1 , $E\widehat{\gamma}(3)$, $var(\widehat{\gamma}(3))$, $\widehat{\gamma}(3)$

4th Question

Assume you are given the values of the parameters ϕ_1 , ϕ_2 , ϕ_3 and σ^2 of a zero-mean AR(3) model.

- a. *(1 point) Explain how you would calculate its ACVF. (*)
- b. *(1 point) Give an argument why the best linear predictor of X_{T+1} based on the last n (n>3) observations is $\varphi_1 X_T + \varphi_2 X_{T-1} + \varphi_3 X_{T-2}$.

5th Ouestion

Assume you observe data $X_1, ..., X_T$ from a stationary process $\{X_t\}$ and from these you obtain estimates $\widehat{\gamma}(0),...,\widehat{\gamma}(T-1)$ of the ACVF in the usual way. The goal is to test whether $EX_t=0$, based on the sample mean of the data. Researcher A assumes $\{X_t\}$ is White noise. Researcher B assumes $\{X_t\}$ is an AR(10).

- a. (0.6 points) Explain why the two researchers will eventually arrive at different conclusions
- b. *(0.3 points) What is the disadvantage of B as compared to A, if A is right is his assumption?^(**)
- c. *(0.3 points) What is the disadvantage of A as compared to B, if B is right is his assumption?^(**)
- d. *(0.3 points) What will happen if $\{X_t\}$ is an MA(1) with θ >0? (**)

^(*) Explain the calculations in enough detail that they could be carried out (for specific values of the quantities involved) on a PC by somebody who is not familiar with the subject. e.g. : set a 2x2 matrix A=[..] and a vector c=(). Then calculate $A^{-1}c$, ...

^(**) Who is (approximately) controlling the size of the test? Who has better power properties (if both are controlling the size)?

Some formulas and facts you might need:

For an MA(q) with parameters $\theta_1,...,\theta_q$, σ^2 the ACVF is given by

$$\gamma(\mathbf{u}) = \sigma^2 \sum_{j=0}^{q-|\mathbf{u}|} \vartheta_j \vartheta_{j+|\mathbf{u}|}$$

for $|\mathbf{u}| \le \mathbf{q}$ (setting $\theta_0 = 1$).

For an AR(p) model we have for large T:

$$\operatorname{var}(\hat{\phi}_{n,n}) = T^{-1}$$

if n>p.

For an AR(p) model with parameters $\phi_1, ..., \phi_p, \, \sigma^2$ the Yule-Walker equations are:

$$\gamma(\kappa) - \phi_1 \gamma(\kappa - 1) - \dots - \phi_p \gamma(\kappa - p) = \begin{cases} \sigma^2, & \text{if } \kappa = 0 \\ 0, & \text{else} \end{cases}$$

for $\kappa = 0, 1, 2, \dots$ arbitrary.